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Abstract—When studying human-robot collaboration, people
focus on improving robot policies to create fluent coordination
with human teammates. However, the effect the environment has
on human-robot interaction is often overlooked, further limiting
enhancement in robot policies to accommodate environments.
To thoroughly explore environments that result in diverse be-
haviors, we propose a framework for procedural generation
of environments that are (1) stylistically similar to human-
authored environments, (2) guaranteed to be solvable by the
human-robot team, and (3) diverse with respect to coordination
measures. We analyze the procedurally generated environments
in the Overcooked benchmark domain via simulation and an
online user study. Results show that the environments result
in qualitatively different emerging behaviors and statistically
significant differences in collaborative fluency metrics, even when
the robot runs the same planning algorithm.

I. INTRODUCTION

In this work, we focus on human-robot coordination in
a kitchen environment. A robot and a human team up to
cook and serve dishes. An important aspect of collaboration is
the workload distribution between teammates. Human factors
research has shown that too light or too heavy workload can
affect human performance and situational awareness [6]. The
perceived robot’s contribution to the team is a crucial metric
of fluency [4], and human-robot teaming experiments found
that the degree to which participants were occupied affected
their subjective assessment of the robot as a teammate [3].

Our key insight is that changing the environment can result
in significantly different coordination actions despite running
the same coordination algorithm. We propose a framework
for generating environments that induces diverse human-robot
interaction. The domain we apply the framework on is the
increasingly popular Overcooked domain [1] for researching
in the coordination of agent behaviors.

II. APPROACH

The proposed framework consists of three main compo-
nents: 1) A generative adversarial network (GAN) that gener-
ates human-design alike environments. 2) A mixed-integer lin-
ear programming (MIP) repair procedure to ensure generated
environments are playable. 3) A quality-diversity algorithm
that searches the latent space of GAN to explore diverse
environments that induce various human-robot collaboration
behaviors. We evaluate our approach through an extensive
experiment where we simulate and examine human-robot
interaction and task completeness in different environments.
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Fig. 1: An overview of the framework for procedurally generating
environments that are stylistically similar to human-authored envi-
ronments. Our environment generation pipeline enables the efficient
exploration of the space of possible environments to procedurally
discover environments that differ based on provided metric functions.

III. EXPERIMENTS

We performed four experiments to demonstrate that our
proposed framework generates a variety of environments that
result in a diverse set of coordination behaviors. In the
following paragraph, we focus on presenting an experiment
that explores environments that captures failure cases caused
by designed robot policies. The remaining experiments are
documented in the full paper.

In this experiment, the robot executes a QMDP policy,
which chooses actions that maximizes performance while
also considering the actions taken by the human. The human
executes a myopic policy, which myopically selects the highest
priority task based on the current dish prepping progress. We
generate environments that minimize the performance metric,
which is useful for searching failure cases of developed
algorithms [2]. We are specifically interested in drops in
performance that arise from the assumptions of the QMDP
formulation, rather than, for example, poor performance be-
cause objects are too far from each other. Therefore, we
use a robot executing an MDP policy that fully observes
the human subtask as a baseline performance of human-
robot interaction. We maximize the difference in performance
between simulations with the MDP policy and the QMDP
policy.



Fig. 2 shows the generated archive: we illustrate the 3D
behavior space as a series of five 2D spaces, one for each value
of the difference in orders. Each colored cell represents an en-
vironment with workload distribution computed by simulating
the two agents in that environment. Lighter colors indicate
lower performance of the team of the QMDP robot and the
myopic human compared to an MDP robot and a myopic
human. We are particularly interested in the environments
where the team fails to complete the task.

In environment (1) of Fig. 2, the simulated human picks
up an onion at the same time step the robot delivers the third
onion to the pot. There is now no empty pot to deliver the
onion, so the human defaults to going to the pot and waiting
there, blocking the path of the robot. The environment leads to
an edge case that was not accounted for in the hand-designed
human model but revealed by attempting to minimize the
performance of the agents.

In environment (2) of Fig. 2, the two agents get stuck in
the narrow corridor in front of the rightmost onion dispenser.
Due to the “auto-unstuck” mechanism, the simulated human
randomly picks an action and goes backward towards the onion
dispenser. The QMDP planner, which uses the change of dis-
tance to the subtask goal location as observation (see appendix
in full paper), erroneously infers the human subtask is to reach
the onion dispenser, and does not move backwards to allow the
human to go to the dish dispenser. This environment highlights
a limitation of the distance-based observation function in the
robot policy design since it is not robust to random motions
that occur when the two agents get stuck.

Overall, we observe that when minimizing performance,
the generated environments reveal edge cases that can help
a designer better understand, debug, and improve the agent
models.

IV. IMPLICATIONS

We envision our framework as a method to assist human-
robot interaction (HRI) planning in the future. The framework
is capable to facilitate the understanding of complex human-
aware algorithms or other adaptive agents [5] in complex task
settings [7]. We are excited about future work that highlights
diverse behaviors in different settings where coordination is
essential, such as manufacturing and assistive care. Finally, we
hope that our work will guide future HRI planning research to
consider the environment as a significant factor in coordination
problems.
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